
HAWIS: Hardware-Aware Automated WIdth Search for Accurate, Energy-Efficient
and Robust Binary Neural Network on ReRAM Dot-Product Engine

Qidong Tang1, Zhezhi He1,∗, Fangxin Liu1, Zongwu Wang1, Yiyuan Zhou1, Yinghuan Zhang2, Li Jiang1,2,3,∗
1 Shanghai Jiao Tong University, Shanghai, China, 2 Shanghai Qi Zhi Institute, Shanghai, China

3 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

Abstract— Binary Neural Networks (BNNs) have at-
tracted tremendous attention in ReRAM-based Process-In-
Memory (PIM) systems, since they significantly simplify the
hardware-expensive peripheral circuits and memory footprint.
Meanwhile, BNNs are proven to have superior bit error toler-
ance, which inspires us to make use of this capability in PIM
systems whose memory bit-cell suffers from severe device defects.
Nevertheless, prior works of BNN do not simultaneously meet the
criterion that 1) achieving similar accuracy w.r.t its full-precision
counterpart; 2) fully binarized without full-precision operation;
and 3) rapid BNN construction, which hampers its real-world de-
ployment. This work proposes the first framework called HAWIS,
whose generated BNN can satisfy all the above criteria. The
proposed framework utilizes the super-net pre-training technique
and reinforcement-learning based width search for BNN genera-
tion. Our experimental results show that the BNN generated by
HAWIS achieves 69.3% top-1 accuracy on ImageNet with ResNet-
18. In terms of robustness, our method maximally increases the
inference accuracy by 66.9% and 20% compared to 8-bit and
baseline 1-bit counterparts under ReRAM non-ideal effects. Our-
code is available at: https://github.com/DamonAtSjtu/HAWIS.

I. INTRODUCTION

The emerging Resistive Random-Access Memory
(ReRAM) is a promising candidate for future Neural
Network (NN) accelerators. It supports vector-matrix
multiplications in the analog domain, resulting in over 100×
energy efficiency improvements than the Von-Neumann
system [3]. However, there are three challenges to deploy
NN on ReRAM accelerators: 1) the processing technology
of ReRAM to provide multi-bit precision is still commodity
immature [17]; 2) The peripheral circuits (e.g., digital-to-
analog converters) consume a great portion of the on-chip
area and energy [15]; 3) The inference accuracy is vulnerable
to the various device defects, such as resistance variation and
Stuck-At-Fault (SAF) [5].

Binary Neural Network (BNN), which constrains the
weights and activations to two levels (i.e., -1 or +1), is a
promising solution to overcome these challenges of ReRAM.
Prior works have proved that BNNs could effectively lower
the hardware overhead in terms of energy, area, etc. [17, 18].
Beyond that, BNN reveals superior bit error tolerance [13],
expected to counter the non-ideal effects in ReRAM crossbars.

Network binarization, nevertheless, is also accompanied by
the following drawbacks: 1) Even with a series of advanced
optimization techniques applied (e.g., minimizing the quanti-
zation error [12], reducing the gradient error [9]), BNNs still
face a drastic accuracy degradation w.r.t its full-precision (FP)
counterpart. A state-of-the-art work [12] reports the binariza-
tion causes 11.5% accuracy drop of ResNet-18 on ImageNet,

200 400 600 800 1000 1200
Energy Consumption (J)

90

91

92

93

To
p-

1
A

cc
 (%

)

BiOps (M):
200 400 800

Uniform Widened BNN
HAWIS Searched Net

Fig. 1. HAWIS lies on a better Pareto curve (yellow) than uniformly widened
BNNs (blue). BiOps denote #(Binary Operations).

which hampers the adoption of BNNs in real-world applica-
tions; 2) BNNs introduced in the prior literature [9, 12, 24]
still contain a great portion of non-binarized computation;
for example, the first and the last layer are not binarized.
Thus, they require computing units with FP computation
capability. Besides, applying binarization on the remained FP
computation operands will further lower the accuracy to an
unacceptable level (e.g., ∼24.2% accuracy drop of ResNet-18
on ImageNet based on our experimental results in Table I).

As the countermeasure, [11] proposes to widen the neu-
ral network to mitigate the accuracy drop caused by DNN
quantization, which is one of the most effective solutions yet.
Unfortunately, it uniformly widens the target DNN (i.e., same
expansion ratio across the network), leading to model over-
fitting. One recent work [16] attempts to widen the neural
network non-uniformly (i.e., specific expansion ratio for each
layer) via an evolution algorithm. However, to reduce the
searching cost, a small searching space including only 6
options of expansion ratio is adopted by [16]. Nevertheless,
the searching cost is still high (60 GPU days) and will further
increase with finer-grain expansion ratios.

To summarize the above-mentioned prior efforts in building
high accuracy BNN, there still lacks a work of BNN that can
achieve the following objectives simultaneously:
O1. Similar accuracy w.r.t to the FP counterpart.
O2. Fully binarized that can be executed on ReRAM crossbar

without additional computing units for FP operations.
O3. Rapid and hardware-aware BNN construction (i.e.,

searching and training).
In this work, we bring up the framework called HAWIS

to enable hardware-aware automated width search for ac-
curate, energy-efficient and robust BNN on ReRAM dot-
product engine, with all three objectives above satisfied. Our
contributions in this work can be enumerated as follows:

• As far as we know, this work is the first BNN satisfying
objectives (O1-O3) simultaneously.

• We propose network re-factorization and initialization
pre-training to prepare a well-trained super-net for rapid

https://github.com/DamonAtSjtu/HAWIS

and precise performance evaluation. Based on the super-
net, we propose the search framework based on reinforce-
ment learning, with fine-grain layer-wise expansion ratio
searching space .

• Experimental results show that HAWIS achieves 69.3%
top-1 accuracy on ImageNet with ResNet-18. The BNNs
generated by HAWIS achieve superior accuracy and
energy tradeoff shown in Fig. 1. In terms of robustness,
our method maximally increases the inference accuracy
by 66.9% and 20% compared to 8-bit and baseline 1-bit
counterparts under ReRAM non-ideal effects.

II. PRELIMINARIES

A. Neural Network Binarization

Network binarization is the extreme low bit-width DNN
quantization scheme in which weights and activations are
compressed into 1 bit. In DoReFa [24], inputs I fp are ap-
proximated by the binary value Ib = round(clip(I fp, 0, 1)),
while weights W fp are represented by binary value Wb =
sign(W fp) · E(|W fp|). We leverage this plain binarization
scheme as it brings no extra FP computation on ReRAM-based
NN accelerators. More importantly, the activation binarization
and the Batch-Normalization (BN) can be fused and then
realized by a simple comparison operation [20]. Most previous
BNN works [9, 12, 24] still remain non-negligible FP compu-
tations, such as the non-binarized input and output layer. These
non-binarized operations require separate FP processing units
and may consume a large part of the on-chip area and energy,
which is what we try to avoid.

B. Efficient Neural Architecture Search in BNN

Neural Architecture Search (NAS) is committed to finding
efficient neural architectures automatically. However, adapting
the identified networks to resource-limited platforms is still
inefficient due to the FP or multi-bit computing. Binarized
NAS (BNAS) explores the advantages of binarized operations
on memory saving and computational cost reduction to address
these issues. On the one hand, some BNAS methods inherit
traditional NAS and focus on searching the cell-based network
topology. [2, 6] formulate new cell-based search spaces and
new search strategies as they observe that traditional NAS
methods can not be directly applied for BNN search. On the
other hand, some methods adaptively optimize the width of
BNNs based on a baseline. [16] searches for the optimal width
for each layer through an evolutionary algorithm. However,
to reduce the search cost, they adopt an extremely limited
searching space with 6 expansion ratios, which causes sub-
optimal results. One solution is to make the expansion ratio
continuous, but evolution cannot efficiently support this.

C. Slimmable Networks

Slimmable networks [21] are a family of neural networks
that can instantly adjust the width on-the-fly. Given the lower
bound rmin and upper bound rmax of width expansion ratio,
n sub-models Âi are sampled sequentially to update the
slimmable network A with dataset (X,y):

min
∑
i

(
L(f(Âi,X),y)

)
i ∈ (1, 2, 3, · · · , n) (1)

Instead of assigning the same expansion ratio within a sub-
model as [21], we allow layer-specific expansion ratios to
create a non-uniform slimmable super-net. The initially well-
trained super-net provides proper initialization for candidate
models during the search to avoid training them from scratch.

D. Crossbar Array and Device Defects

ReRAM is a two-terminal device with programmable resis-
tance ranging from low resistance state Rmin to high resistance
state Rmax. It can be utilized as an analog matrix-vector mul-
tiplication engine with high parallelism and efficiency [3, 8].
The weight is represented by the resistance of ReRAM and the
input is converted to the voltage. Then the accumulated current
represents the result of matrix-vector multiplication. Owing to
the weights can be either positive and negative, each weight
need to be represented by the subtraction of two crossbars (i.e.
R+

i,j and R-
i,j). In our work, the mapping of binary weight

Wb
i,j upon crossbar can be formulated as follows:

R+
i,j , R

-
i,j =

{
Rmin, Rmax if Wb

i,j = 1
Rmax, Rmin if Wb

i,j = −1
(2)

ReRAM cells mainly suffer two defects: resistance varia-
tions and SAFs [5, 10]. Resistance variation is a deviation of
the actual resistance R′ and the target value R0. In general,
the actual resistance of an ReRAM cell follows a log-normal
distribution according to [10]:

R′ = R0 · eθ θ ∼ N(0, σ2) (3)

where θ follows a normal distribution with zero mean and a
standard deviation of σ. Alternatively, there are two kinds of
SAFs: Stuck-At-Zero (SA0) and Stuck-At-One (SA1) [5]. A
ReRAM cell with SA0 defect caused by over-forming defects
is always in a low resistance state. The SA1 defect is normally
caused by open-switch defects, making ReRAM cells stuck in
a high resistance state. The ReRAM fabrication shows 1.75%
and 9.04% defects rate for SA0 and SA1, respectively [5],
which is taken as the region of interest in this work.

III. APPROACH

We present an overview of the proposed HAWIS framework
in Fig. 2. The objective is to obtain a BNN with comparable
accuracy and minimized energy w.r.t the FP baseline. The
optimization process includes three stages. Stage-A creates
and pretrains a super-net. Stage-B identifies the optimal width
configuration through RL-based search. Stage-C trains the
optimal architecture and estimates its accuracy, energy con-
sumption and robustness.

A. SuperNet Pretraining

Given a FP baseline Afp to prepare for high-performance
BNN generation, we first re-factorize it to obtain a binarized
super-net Bb. Then we utilize the slimmable training technique
introduced in section II-C to initially pretrain Bb.

cat dog
Non-Uniform
SuperNet (4X)

cat dog
Baseline

(1X)

Layer n-2
!!"# = 1.5

Actor Critic

Layer n-1
!!"$ = 2.5

B-1 : Slimmable Fine-tuning

B-2 :
Candidate Fine-tuning

Width
Configuration

Reward

⇔

B-3 :
Performance Evaluation

1.5X

2.5X

Environment

Fine-tuning
& Evaluation

State
Accuracy (&)

En
er

gy
 (Q

)

()*+,- = /(&, 1)

PIM simulator

l Accuracy
l Energy

l Robustness

B) RL-Based Hardware-Aware Width Search

Action
Network

Re-Factorization

Initialization
Pretraining

A-1
A-2

Candidate
Model

Candidate Model Submodel 1,2,3

Candidate Model
Optimal Architecture

A) SuperNet Pretraining
C) Training and Esti-
mation of the Optimal

A-2

A-1

DDPG Agent

...
G11 G12 G1M

GM1 GM2 GMM

I1 I2 IM

Ik [1,M]�

...

V1

VM

Fig. 2. An overview of the proposed HAWIS framework. A) Network re-factorization and initialization pretraining pretrain a binarized super-net. B) We
leverage reinforcement learning to determine the width in a layer-by-layer manner. The agent takes the state as input and outputs an action, which makes up
the width configuration of the candidate model. Slimmable fine-tuning first updates the super-net (B-1). Then the candidate model is initialized according to
the super-net and fine-tuned for few epochs (B-2). Performance evaluation estimates the accuracy and energy consumption (B-3). The reward is returned to
update the agent. C) We train the optimal architecture and estimate the accuracy, energy consumption, and robustness on a crossbar-based PIM simulator.

1) Network Re-factorization: We perform the following
three measures to obtain a binarized super-net Bb.

Binarization Function Insertion. We binarize all Conv
and FC layers in Afp. We dismiss the non-linear activation
layer (i.e., ReLU) as binarization introduces non-linearity.
We remove the max-pooling layer and set the stride of the
corresponding Conv layer as two. The BN and activation
binarization can be fused and implemented by the comparator.
In this way, no extra FP processing units are needed. A fully
binarized network is generated, and we name it Ab.

Topology Modification and Two-Side Regularization.
Binarizing the input and output layer results in low accuracy
even with thermometer coding [22], as indicated by 45.43%
accuracy in Table I. We find two observations and propose the
following countermeasures to compensate for such accuracy
degradation. 1) Valuable information is filtered by the avg-
pooling before the FC classifier in BNN, leading to low-
dimension and low-discrimination features. Thus we remove
the avg-pooling layer, directly flatten the activations and feed
them to the classifier. This topology modification increases the
accuracy to 50.24%, with a negligible increase in the number
of parameters. 2) L2 regularization (known as weight decay)
limits the value of weights at small amplitude, resulting in
more close-to-zero weights. These close-to-zero weights are
extremely sensitive in BNN because one update may change
the sign and thus generate opposite outputs after binarization.
We propose a two-side regularization as follows to solve this
problem while keeping superior generalization.

Ω(w) = ∥(|w| − w0)∥2 =
∑
i

(|wi| − w0)
2 (4)

which encourages the weights clustering around w0 and −w0

instead of 0. The accuracy increases to 51.92%.
Uniform Layer Width Expansion. We uniformly expand

the binarized baseline Ab to create the super-net Bb. We
observe that uniformly widened BNNs basically get overfitted
when the expansion ratio reaches 5 based on the results
in Table II. Thus we set the upper bound of the ratio as 5.

TABLE I
RESULTS OF TOPOLOGY MODIFICATION (TM) AND TWO-SIDE

REGULARIZATION(TS).

Model Method Acc. (%) (∆ %)

Binarized ResNet-18
On ImageNet

Base 45.43 0.0
TM 50.24 + 4.81

TM + TS 51.92 + 6.49

2) Initialization Pretraining: We leverage the slimmable
training technique to pretrain the super-net Bb, which encour-
ages the learned weights to own descending importance along
the output channel index. Important weights are shared by
the sub-networks so that Bb can provide nice initialization
for candidate models in stage-B. Thus, we avoid training
candidates from scratch to obtain precise accuracy evaluation,
resulting in significant search costs reduction.

B. RL-Based Hardware-Aware Automated Width Search

We leverage Deep Deterministic Policy Gradient (DDPG)
based reinforcement learning algorithm to assign layer-wise
width expansion ratio (rl for the l-th layer) optimizing both
the accuracy and energy consumption. There are (L−1) steps
in an episode for an L-layer model as the output channel
number of the last layer is fixed. After getting the super-
net Bb from stage-A, the optimization flow of stage-B in
an episode can be described as follows: 1) The DDPG-agent
makes actions to determine the width configuration{rl}L−1

l=1 in
a layer-wise manner, based on the state and reward acquired
from the environment; 2) A candidate model w.r.t the current
width configuration is generated from Bb. 3) Based on the
candidate and sampled sub-networks, slimmable fine-tuning
continues to update Bb during the search. 4) Candidate fine-
tuning further fine-tunes the candidate model; 5) Performance
evaluation evaluates the accuracy and energy consumption of
the candidate. 6) The reward is returned for generating the
actions in the successive episode.

1) Problem Formulation: The objective of HAWIS is to
optimize the width {rl}L−1

l=1 to achieve a comparable accuracy
of the FP counterpart with minimized energy consumption in

PIM system. We denote a sub-net sampled from the super-
net as Bb({rl}L−1

l=1 |θ̂) with θ̂ assigned by the corresponding
weights in Bb. The reward function is formulated as follows:

R = −Error
(
B∗

b (θ̂),Xeval

)
· log

Q(B∗
b (θ̂))/λ

Q(Ab)
(5)

where Xeval is the hold-out evaluation data, Ab is the binarized
baseline and B∗

b (θ̂) is the candidate model. The first term is
the distance between the inference accuracy and the given
target. The second term is a penalty weighted by λ, where
Q(·) represents the energy consumption. We apply a variant
form of Bellman’s Equation to update the critic-network and
sampled policy gradient to update the actor-network, which is
not specified here due to space constraints.

2) State Space: In each episode, the DDPG agent sequen-
tially obtains a state vector for each layer defined as follows:

sl = (l, ls, cin, cout, nker, nstr, nparam, nfmap, al−1, cl−1) (6)

where l and ls are the layer index and block index, cin and
cout are #input- and #output- channels, nker and nstr denote
the kernel size and stride size, nparam is #parameter and
nfmap is #feature map. All the indicators mentioned above
are measured from Afp. al−1 and cl−1 are the action and the
expanded channel number of the previous layer, respectively.
We normalize each dimension of sl into [0, 1].

3) Action Space: We use a continuous action space since
it keeps the relative order: e.g., 128-channel is wider than 96-
channel. The action al for l-th layer is firstly converted to the
expansion ratio rl and then discretized into the actual channel
number cl:

rl = al(rmax − rmin) + rmin (7)
cl = round(cout · rl/d) · d (8)

where rmax and rmin denote the upper and lower bound of
the expansion ratio. d is the minimal channel width interval.
We may adopt varying upper and lower bound for each layer.
However, for simplicity, we choose the identical bound across
the entire network.

4) Environment: We introduce a three-step process for the
rapid and accurate evaluation of the candidate model.

Slimmable Fine-tuning. The candidate B∗
b (θ̂) generated by

the actor and another three sub-models B1∼3
b (θ̂) are included.

B1
b (θ̂) and B2

b (θ̂) are randomly sampled from Bb, while
the width for different layers in B1

b (θ̂) is the uniform and
in B2

b (θ̂) is different; B3
b (θ̂) is morphed from B∗

b (θ̂) via
applying randomness on the channel width. Then slimmable
training technique updates the super-net Bb for 1 epoch with
the training data Xtrain. The purpose is to synchronize the
shared weights across all channels so that Bb can provide nice
initialization for any sub-model during the search.

Candidate Fine-tuning. We execute customized fine-tuning
for the candidate model for few epochs. The purpose is to
maximize the accuracy for precise evaluation of the candidate.
Note that, the weights updated in this step will be restored after
the performance evaluation and will not be carried into the
next episode.

TABLE II
COMPARISON OF HIGH BIT-WIDTH, UNIFORMLY WIDENED BINARIZED

(U-) AND HAWIS NETWORKS. RES-20 DENOTES RESNET-20.

Model
Res-20 CIFAR10 Res-32 CIFAR10 Res-18 ImageNet

Energy Acc. Energy Acc. Energy Acc.
(µJ) (%) (µJ) (%) (mJ) (%)

FP - 92.1 - 92.8 - 69.6
Quan-8bit 1387 92.2 2349 92.9 66.5 69.8

U-1× 32.7 81.22 50.6 83.91 3.8 51.92
U-2× 120 88.95 195 90.22 8.2 63.38
U-3× 238 91.4 393 92.11 15.0 66.57
U-4× 503 92.17 893 92.49 25.1 68.19
U-5× 924 92.77 1571 93.00 43.5 69.22
U-6× 1176 92.78 1984 93.07 - -

HAWIS-A 368 92.42 949 92.91 21.3 68.21
HAWIS-B 849 93.13 1045 93.18 29.4 69.29

Performance Evaluation. We estimate the test accuracy on
Xeval and the energy consumption of the candidate model using
MNSIM [19]. The reward is calculated according to Eq. (5)
and then returned for the update of the agent, which targets
high accuracy and low energy consumption.

C. Training and Estimation of the Optimal Model

According to the optimal architecture {rl}L−1
l=1 generated

in stage-B, the optimal binarized model is constructed and
trained from scratch. We estimate the final accuracy, energy
consumption and robustness under device defects.

IV. EXPERIMENTS

We conduct experiments to prove the effectiveness of
HAWIS on multiple backbones on CIFAR-10 [7] and Im-
ageNet [14]. The setting of the ReRAM crossbar system
follows [5] except for 1-bit DACs. The upper bound of the
width expansion ratio is set as 5. Due to the constraints of
GPU memory, we fix the output channel of the first 7×7 Conv
layer as 96 and creates another 3×3 Conv layer whose width
is adjustable during the search. Stage-A pretrains the super-net
for 120 (30) epochs on CIFAR-10 (ImageNet). Stage-B con-
tains 600 episodes, where 20% (10%) training data of CIFAR-
10 (ImageNet) are held out for performance evaluation. One
epoch and three epochs are included in slimmable fine-tuning
and candidate fine-tuning, respectively. Stage-C uses the full
dataset. The learning rate starts from 0.1(0.05), decays by 0.1
in the epochs of {200, 260, 320} ({30, 50, 65}) for CIFAR-
10 (ImageNet).

A. Comparison Against High Bit-width and Uniformly
Widened Binary Networks

Although Uniformly widening improves the accuracy loss
caused by binarization, ResNet-20/32 need to be widened by
5× to reach the accuracy of Quan-8bit models on CIFAR-10.
As a comparison in Table III, HAWIS can optimize accuracy
and energy consumption simultaneously. We assign a larger λ
(defined in Eq. (5)) for HAWIS-A models and a smaller one
for HAWIS-B. HAWIS-A models consume much less energy
to reach the accuracy of FP baseline. Assigned a smaller
penalty on energy, HAWIS-B exceeds the accuracy of U-6×
models on ResNet-20/32 with lower energy consumption. On
ImageNet, HAWIS also achieves better overall performance,

TABLE III
PERFORMANCE AND COMPLEXITY COMPARISON ON CIFAR-10.

Arch Precision BiOps FLOPs Search Cost Top-1
(W/A) (×106) (×106) (GPU-days) (%)

ResNet-20 [4] 8/8 0 41 - 92.2
Bi-Real-18 [9] 1/1 561 11 - 91.2

BARS [23] 1/1 1048 2 - 92.98
BNAS [6] 1/1 670 3 0.42 92.7
BATS [2] 1/1 410 30 0.25 93.7

HAWIS 1/1 1100 0 1.25 93.13

TABLE IV
PERFORMANCE AND COMPLEXITY COMPARISON ON IMAGENET.

Arch Precision BiOps FLOPs Search Cost Top-1
(W/A) (×109) (×108) (GPU-days) (%)

Resnet-18 [4] 8/8 0 18.2 - 69.8
Bi-Real-18 [9] 1/1 1.68 1.38 - 56.4
Bi-Real-34 [9] 1/1 3.53 1.39 - 62.2

MeliusNet-42 [1] 1/1 9.69 1.74 - 69.2
FracBNN [22] 1/1.4 7.30. 0.01 - 71.8

BARS [23] 1/1 2.59 2.54 - 60.3
BNAS [6] 1/1 15.30 4.10 0.42 63.5
BATS [2] 1/1 2.16 1.21 0.25 66.1

Res18-Auto [16] 1/1 19.40 3.55 60 69.7

HAWIS 1/1 37.8 0 16 69.3

which consumes less energy to reach similar accuracy of
uniformly widen BNNs. Although the best accuracy is about
0.5% lower than Quan-8bit model, HAWIS reduces the energy
by ∼ 2.3× (29.4 vs. 66.5 mJ).

B. Comparison Against State-of-the-Art Efficient Models

We compare the performance and complexity (i.e., FLOPs
and BiOps, which are the number of FP and binary operations,
respectively) of our method with other state-of-the-art efficient
models. The results are shown in Table III and Table IV.
HAWIS on CIFAR-10, with fully binarized layers, outper-
forms the 8-bit ResNet-20 baseline by about 1% and achieves
comparable accuracy compared with Binary NAS methods
(i.e. BNAS and BARS). BATS [2] achieves slightly better
accuracy but it contains almost the same number of FP
operations as the 8-bit baseline.

On ImageNet, although the accuracy of HAWIS is 0.5%
lower than the 8-bit ResNet-18 baseline , it outperforms most
manually designed BNNs and Binary NAS methods which still
own a large part of FLOPs. FracBNN [22] obtains 71.8% Top-
1 accuracy, but it possesses a FP output layer and fractional
convolutions, where 1-bit or 2-bit weights are used dynami-
cally. Res18-Auto[16] obtains 0.4% higher accuracy than ours,
but it contains enormous FP operations (FLOPs=3.55) and
requires a longer search time.

C. Robustness Under Device Defects

Fig. 3 compares the robustness of HAWIS, U-1× BNN and
Quan-8bit counterparts. Quan-8bit networks are susceptible
to SA0 defects, where 1% and 0.2% SA0 rates lead to
a system malfunction on CIFAR-10 and ImageNet, respec-
tively. In contrast, binarized models keep stable under SA0
defects. U-1× BNN is more robust than Quan-8bit models
under SA1 and resistance variation while HAWIS further

0 1 2

25
50
75

100
CIFAR-10 under SA0

0 1 2

25
50
75

ImageNet under SA0
Quan-8bit HAWIS U-1X BNN

0 5 10

25
50
75

100
CIFAR-10 under SA1

0 5 10

25
50
75

ImageNet under SA1

0.0 0.2 0.4
25
50
75

100 CIFAR10 under variance

0.0 0.2 0.4

25
50
75 ImageNet under varianceTe

st
 A

cc
ur

ac
y

(%
)

SAF Defect Rate (%) / deviation of resistance variance

Fig. 3. Test Accuracy under SA0/SA1/resistance variance. (Left) ResNet-20
on CIFAR-10; (Right) ResNet-18 on ImageNet. Error-bar denotes mean±std
with multiple trials. Blue shadow shows regions of interest in SAFs.

improves the robustness of the binary baseline. In Quan-8bit
models, faults on high-amplitude bits cause more significant
calculation deviation, making them suffer more from device
defects, especially SA0. Our fully binarized networks have
only two levels (1 and -1) for weights. Thus influence of
different bits becomes average, resulting in higher robustness.
HAWIS models possess finer structures and more parameters
than U-1× BNNs, which further improves their resistance to
device faults. The binarized HAWIS models can keep high
performance and be deployed in real-world applications with
the advancement of ReRAM technology, while 8-bit quantized
networks easily come into a malfunction.

D. Ablation Study

Ablation study proves the necessity of slimmable fine-tuning
and candidate fine-tuning to produce the best architecture
jointly. Disabling candidate fine-tuning prevents the candidates
from convergence to the highest accuracy and leads to low
reward (-0.338 and -0.359 in Table V). The under-estimated
performance induces the RL agent to choose smaller archi-
tectures as they consume less energy. Consequently, the final
model chosen by the RL agent is small but low-accuracy. If
slimmable fine-tuning is disabled, the impact of a good action
cannot be directly passed to the next episode. The weights in
the super-net are fixed all the time during the search and may
bring great bias to the exploration direction. Correspondingly,
the agent converges faster and lacks exploitation. As shown
in Fig. 4, the blue and purple curves have fewer rounds and
a narrower breadth of exploration than the yellow one, which
makes it easier to fall into a local optimal solution.

TABLE V
EFFECTS OF SLIMMABLE FINE-TUNING AND CANDIDATE FINE-TUNING.

Reward Energy (µJ) Acc. (%)

Slimmable + Candidate -0.019 333 92.15
Slimmable Fine-tuning -0.338 283 91.71
Candidate Fine-tuning -0.023 357 91.88

No Fine-tuning -0.359 207 91.48

32
48
64

Slimmable + Candidate
Slimmable Fine-tuning

32
48
64

Th
e

Nu
m

be
r o

f O
ut

pu
t C

ha
nn

el
s

Slimmable + Candidate
Candidate Fine-tuning

0 100 200 300 400 500 600
Episode

32
48
64

Slimmable + Candidate
No Fine-tuning

Fig. 4. #(Output Channels) in the 2-th layer of ResNet-20 in each Episode.

1 3 5 7 9 11 13 15 17 19

64
128
192
256

HAWIS U-4X

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

64
128
192
256

1 3 5 7 9 11 13 15 17

512
1024
1536
2048

(a). Resnet-20, CIFAR-10

(b). Resnet-32, CIFAR-10

(c). Resnet-18, ImageNet

Th
e

Nu
m

be
r o

f O
ut

pu
t C

ha
nn

el
s

Layer Index

Fig. 5. Comparison of the number of output channels in each layer between
4×-Uniformly widen BNN (blue) and our HAWIS model (yellow).

E. Analysis of the Searched Architecture

To further analyze the optimal architectures generated by
HAWIS, Fig. 5 visualizes the number of output channels
in each layer. We have three observations. 1) HAWIS archi-
tectures commonly possess more channels in the front layers
and fewer channels in the tail layers compared with U-4X
model. This reduces the information loss at the beginning and
transmits more useful features to the following network. 2)
HAWIS has a bottleneck-like structure in ResNet-32. Layers
with the same width in baseline make up a stage and two
successive Conv layers consists of a residual block. The RL
agent chooses a narrow width for the former layer within a
block at the end of a stage (i.e. the 8/18/28-th layer is narrower
than the 9/19/29-th). 3) The selected channel numbers are
energy-efficient. The agent assigns 112 channels for the 8-
th to 13-th layers in ResNet-20, which happens to completely
occupy 4 crossbars (full utilization). These observations prove
the significant necessity of carefully determining the optimal
backbone-specific and device-specific width configuration to
maximize the performance of BNNs.

V. CONCLUSION

In this work, we introduce a RL-based hardware-aware
framework to search for the optimal width configuration

in BNNs. We leverage slimmable fine-tuning and candidate
fine-tuning for rapid and precise performance evaluation via
weight sharing over the huge search space. Combined with
network re-factorization, we are the first to obtain high-
performance fully binarized networks. Extensive experiments
show that HAWIS architectures have high accuracy, low
energy consumption and superior robustness against device
defects, which shows great potential for future large-scale
applications on ReRAM-based PIM accelerators.

ACKNOWLEDGMENTS

This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 61834006,
62102257), National Key Research and Development Program
of China (2018YFB1403400). Li Jiang and ZheZhi He are the
corresponding authors.

REFERENCES
[1] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph

Meinel. Meliusnet: Can binary neural networks achieve mobilenet-level
accuracy? arXiv preprint arXiv:2001.05936, 2020.

[2] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary
architecture search. ECCV, 2020.

[3] Ping Chi et al. Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory. ISCA, 2016.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[5] Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan.
Noise injection adaption: End-to-end reram crossbar non-ideal effect
adaption for neural network mapping. In DAC, 2019.

[6] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning
architectures for binary networks. ECCV, 2020.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[8] Fangxin Liu, Wenbo Zhao, Zongwu Wang, Tao Yang, and Li
Jiang. Im3a: Boosting deep neural network efficiency via in-memory
addressing-assisted acceleration. In GLSVLSI, 2021.

[9] Zechun Liu et al. Bi-real net: Enhancing the performance of 1-bit
cnns with improved representational capability and advanced training
algorithm. In ECCV, 2018.

[10] Chang Ma et al. Go unary: A novel synapse coding and mapping scheme
for reliable reram-based neuromorphic computing. In DATE, 2020.

[11] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn:
Wide reduced-precision networks. ICLR, 2018.

[12] Haotong Qin et al. Forward and backward information retention for
accurate binary neural networks. In CVPR, 2020.

[13] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack:
Crushing neural network with progressive bit search. In ICCV, 2019.

[14] Olga Russakovsky et al. Imagenet large scale visual recognition
challenge. IJCV, 2015.

[15] Ali Shafiee et al. Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. ISCA, 2016.

[16] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. Searching for
accurate binary neural architectures. In ICCV Workshops, 2019.

[17] Linghao Song, You Wu, Xuehai Qian, Hai Li, and Yiran Chen. Rebnn:
in-situ acceleration of binarized neural networks in reram using com-
plementary resistive cell. THPC, 2019.

[18] Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, and Huazhong Yang.
Binary convolutional neural network on rram. In ASP-DAC, 2017.

[19] Lixue Xia et al. Mnsim: Simulation platform for memristor-based
neuromorphic computing system. IEEE T COMPUT AID D, 2017.

[20] Li Yang, Zhezhi He, and Deliang Fan. A fully onchip binarized con-
volutional neural network fpga impelmentation with accurate inference.
In ISLPED, 2018.

[21] Jiahui Yu and Thomas S Huang. Universally slimmable networks and
improved training techniques. In ICCV, 2019.

[22] Yichi Zhang et al. Fracbnn: Accurate and fpga-efficient binary neural
networks with fractional activations. In FPGA, 2021.

[23] Tianchen Zhao et al. Bars: Joint search of cell topology and lay-
out for accurate and efficient binary architectures. arXiv preprint
arXiv:2011.10804, 2020.

[24] Shuchang Zhou et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

	Introduction
	Preliminaries
	Neural Network Binarization
	Efficient Neural Architecture Search in BNN
	Slimmable Networks
	Crossbar Array and Device Defects

	Approach
	SuperNet Pretraining
	Network Re-factorization
	Initialization Pretraining

	RL-Based Hardware-Aware Automated Width Search
	Problem Formulation
	State Space
	Action Space
	Environment

	Training and Estimation of the Optimal Model

	Experiments
	Comparison Against High Bit-width and Uniformly Widened Binary Networks
	Comparison Against State-of-the-Art Efficient Models
	Robustness Under Device Defects
	Ablation Study
	Analysis of the Searched Architecture

	conclusion

